If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12m^2-18m=0
a = 12; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·12·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*12}=\frac{0}{24} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*12}=\frac{36}{24} =1+1/2 $
| 12m2-18m=0 | | 84÷(x+6)=7 | | 5(x+4)-2x=32 | | 3x=7=19 | | 2/9(5x-8)=12 | | (x^2+7x+10)=0 | | (x^)+7x+10)=0 | | 10x+45=265 | | 13/14-5x/2=0 | | 5(1+s)=-9+6s | | (x-3)(x^2+7x+10)=0 | | (x+60)+(3x+10)=180 | | 4x+1=2x+9 | | -13+5a=3a(a-3) | | x+(x+15)=335 | | 9. x+(x+15)=335 | | x+(x+15)=335 | | 3k^2-k-14=0 | | 3k^2=k+14 | | 2x+10°=3x-50° | | 4k^2-k-10=0 | | 4x-7=10x-11 | | 14=(6+z/2) | | 5g+3=11g-2 | | 8a-16-5-6a=85-3a | | y+3.4=-9.7 | | 8a-16-6a=85-3a | | 3r-1=2r+5 | | 8(3x+2)=2(13x-5) | | (x+50)+(x+10)+90+90=360 | | 4x÷12=25 | | 6x^2-30=24 |